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Abstract: This paper describes and evaluates advanced aligning and comparison method dedicated for human
motion trajectory analysis. It utilizes Dynamic Time Warping approach and can be applied for relatively long (30
seconds or longer) and complex motion paths. In contrary to other human motion analysis techniques we do not
have restriction on motion direction, we use only kinematic data and we are able to compare any foot trajectory
no matter how many rotations take place during the motion. As the result an algorithm outputs set of vectors
along motion path that corresponds to beginning and end positions of footsteps. The left and right foot is analyzed
separately. The difference of two motion paths can be expressed in any DTW-based feature namely minimal,
maximal, median, mean and normalized DTW based distance. We have evaluated our method on karate kata
dataset that contains four types of motion sequences performed by two black belt Shorin-Ryu karate masters with
more than 20 years of experience. The evaluation of our method assured us that our approach can be easily applied
for aligning and comparison of any other motion class described by two dimensional motion trajectories. The
method can be applied for example in sport or physical therapy exercises data evaluation and it is invariant to body
proportion and motion execution speed.
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1 Introduction
This paper is an extension of an article published
in conference proceedings [11]. We have extend it
significantly by adding extensive analysis of proposed
approach on karate kata dataset (in original paper
only one MoCap pair was analyzed and discussed).
We have also extended state of the art section. In
this article we revise all figures and introduce many
new ones that help reader to follow the idea of our
signal processing method. We have also evaluated
additional DTW-based motion parameters namely
minimal, maximal, median and mean DTW distances
(previously we only took into account normalized
DTW distance). We have also added explanation of
the MoCap aligning procedure.

Nowadays not only professional but also amateur
athletes might have access to computer aided systems
that optimize they sport performance giving them tips
or advices concerning training plan, diet and other
sport activities aspects. Thanks to motion capture
(MoCap) systems which becomes an affordable pur-
chase even a medium sport club can have its own
or cooperate with motion capture laboratory. MoCap

systems allows to perform calculation of various mo-
tion parameters and comparing those parameters be-
tween two or more persons.

Dynamic time warping (DTW) technique is ex-
cellent tool for single and multidimensional signal
aligning. Among many important application this
method can be used with various human motion data,
for example for motion editing, such as refining mo-
tions to meet new timing constraints or modifying the
acting of animated characters [12] or multi-modal mo-
tion sequences aligning [18]. Another application of
DTW is for classification purposes, for example in [9]
it is applied for 2-3 seconds long karate actions clas-
sification or in [6] [3] [15] [1] [5] [4] for recognition
of other classes of motions. DTW finds its applica-
tion also in continues motion segmentation [13] [7] or
gait classification [16]. The minimal distance methods
can be applied together with DTW in order to detect
abnormal behavior [2]. DTW can also be applied to
perform automatic evaluation of spatial and temporal
errors in sport motion [14] or physical therapy exer-
cises [17] while using wearable motion capture sen-
sors. In [19] authors align time series in order to com-
pare motion capture data of two subjects performing
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Figure 1: This figure presents the rendering of two
example frames from our MoCap recordings in the
skeletal form. Each sphere represents body joint po-
sition. Lines links body joints in hierarchy. The left
image shows two persons (green and blue) from two
recordings before aligning them to each other. The
right one shows the same two persons however the
green person is aligned to blue one.

similar walking action in certain direction, and align-
ment of two people with similar facial expressions.

In this paper we will propose and evaluate a novel
DTW-based method that allows to align and compare
motion trajectories of relatively long (30 seconds or
longer) and complex human motion paths. In contrary
to other human motion analysis techniques we do not
have restriction on motion direction, we use only kine-
matic data and we are able to compare any foot trajec-
tory no matter how many rotations take place during
the motion. The output of our algorithm are vectors
defined along motion trajectory that corresponds to
beginning and end positions of steps. The left and
right foot is analyzed separately. The difference of
two motion paths can be expressed in any DTW-based
features. The validation of the method was performed
on MoCap recordings of two Shorin-Ryu karate mas-
ters. They performed karate kata which are sets of pre-
cisely defined karate movements. During kata all mo-
tions have to be performed with correct dynamic and
in defined sequence of actions, however each athlete
does not have a strict requirements how fast a particu-
lar kata should be performed. The kata has to demon-
strate the correct actions patterns however it does not
need to be done as fast as it is possible. Due to this
there are large difference in timing between partici-
pants. Those factors makes this class of action excel-

lent example for algorithm testing.

2 Material and methods
In this section we will present dataset and our method-
ology description. Both source code and data set we
used in this paper can be downloaded from [10].

2.1 Dataset
The dataset is consisted of four types of karate kata
performed by two black belt Shorin-Ryu karate mas-
ters with more than 20 years of experience. Those
kata are Pinian Shodan, Pinian Nidan, Fukyugata Ichi
and Fukyugata Ni. Recording was made with Shadow
2.0 MoCap system that has 17 IMU (inertial mea-
surement units) with 3-axis accelerometer, gyroscope,
and magnetometer. The tracking frequency was set to
100Hz with 0.5 degree static accuracy and 2 degrees
dynamic accuracy. In Figure 1 we present example vi-
sualization of one MoCap frame acquired by our sys-
tem. Persons we have recorded were male and female
having different height, body proportions, weight and
motion ranges. In Table 1 we present number of Mo-
Cap frames acquired for each kata both for the first
and the second person.

2.2 Recordings aligning procedure and di-
rection vector

In most cases two MoCap recordings of the same
motion cannot be compared before some initial
preprocessing. This is because depending on initial
position the person is facing, the motion path might
be rotated towards the other. It can be observed in
Figures 4-10 (a) that present trajectories of right foot
of two persons (blue and green) before aligning. The
aligning procedure goes as follows: at first we center
the initial hips position of both recordings so that
x0 = 0 and z0 = 0. Next we will rotate the input
recording around Y axis by the angle α calculated
with Algorithm 1.

After determining the α angle we perform rota-
tion of hips joint around Y axis. Because rotation op-
eration is performed on root joint of hierarchical kine-
matic model the rotation parameter has to be changed
only on this single joint. The hierarchical model can
be easily recalculated to direct model, which we use
later on.
The output data is than processed with heuristic
method described in paper [8], which corrects the mo-
tion direction under assumption that at least one foot
of an observed person remains at the ground. After
above translation and rotation the aligning procedure
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Table 1: This table presents number of MoCap frames acquired for each kata both for the first and the second
person.

Kata Person 1 frames count Person 2 frames count
Pinian Shodan 3107 3824
Pinian Nidan 2838 3269

Fukyugata Ichi 3006 2794
Fukyugata Ni 3116 3797

Algorithm 1: Recordings aligning.
Data: input.Root.RotationXYZ - Euler rotation angles of root joint of input MoCap; input.LeftThigh.X - X

coordinate of LeftThigh joint of input MoCap; ref.RightThigh.Z - Z coordinate of RightThigh joint
of reference MoCap.

Result: angle α - after rotation around Y axis by this angle input and reference MoCap became aligned.
1 Function optimize.angle(x)
2 begin

/* recalculate Euler angles to quaternion */

3 q1← euler2quaternion(input.Root.RotationXYZ)
/* calculate quaternion from axis angle */

4 q2← quaterionFromAxisAngle([0,1,0],x)
5 q3← q2 * q1

/* recalculate quaternion to Euler angles */

6 input.Root.RotationXYZ← quaternion2euler(q3)
/* define vectors in X-Z plain */

7 v1← [input.LeftThigh.X,0, input.LeftThigh.Z] - [input.RightThigh.X,0, input.RightThigh.Z]
8 v2← [ref.LeftThigh.X,0, ref.LeftThigh.Z] - [ref.RightThigh.X,0, ref.RightThigh.Z]

/* find Euclidean distance between vectors */

9 return euc.dist(v1, v2)
/* run simplex optimization */

10 α← simplex(optimize.angle(x = 0))
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is completed - see Figure 3.
Those trajectories, although are clearly visually sim-
ilar, cannot be yet successfully compared by DTW.
That is because typical Euclidean distance measure
we use will not deal well with curvature mapping. Be-
cause of that we will create different motion primi-
tives. At first we will determine which foot moves
at certain moment of time and which remains on the
ground – see Algorithm 2.

After finding lr vector we can determine when
motion of left and right foot begins – see Algorithm 3.

Because Algorithm 3 is based on heuristic from
Algorithm 2, vectors returned by it might not be iden-
tical with real steps taken be a person. The tempo-
ral index of beginning and end of motion are replaced
by spatial parameters. An example visualization of
those vectors for input and reference data is presented
in Figure 4. That image shows only data for right foot.
The set of vectors that starts at the beginning of foot
motion and ends when this motion is finished is used
for DTW with Euclidean distance function. In DTW
right and left foot vectors are processed separately.

3 Results

In order to check the correctness of our approach we
have tested in on dataset described in section 2.1. We
wanted to check if algorithm correctly aligns motions
of left and right foot of persons from our dataset. We
have implemented our algorithm in R language using
RMoCap package [4]. The experiment can be repro-
duced by using our source code and available data. In
this section we will present the detailed evaluation re-
sults of our approach. Figure 2 presents aligning error
plot which is a result of the DTW aligning procedure
described in Section 2.2. There are four results for
each kata because aligning is made in the same man-
ner no matter if we analyze left or right foot. In Ta-
ble II we present measurements taken on DTW-based
paths computed between input and reference MoCap.
Those are maximal, minimal, median, mean and nor-
malized DTW distance.

DTW approach generates distance matrices
which together with the warping paths supplies us
with valuable information about path matching pro-
cess between template and reference data. In Fig-
ures 3-9 we present plots that visualize results of our
algorithm. Each figure contains four subplots: Mo-
Cap data before (a) and after aligning (b), vectors that
corresponds to motions directions (c) and color-coded
DTW cost matrix (d). The analysis of left and right
foot motion of each kata was made separately.
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Figure 2: This figure presents aligning error plot
which is a result of the DTW aligning procedure de-
scribed in Section 2.2.

4 Discussion

All kata we have tested were correctly aligned
according to our expectations. Values of aligning
procedure error presented in Figure 2 indicate that
simplex-based approach introduced in Section 2.2
coverages giving a stable solution. In case of Pinian
Nidan and Fukyugata Ni kata error we do not observe
large relative change of error rate. This is because
input and reference MoCap were nearly aligned to
each other in the beginning. This was because before
each MoCap acquisition our IMU-based system
was calibrated and in those two cases participants
begun kata just instantly after calibration ended, so
they did not have time to turn in other direction. In
case of Fukyugata Ichi and Pinian Shodan kata the
relative drop in error rate is clearly observable. An
effect of DTW aligning procedure is also visible in
Figure 3-10 in subplots (a) and (b). By comparing (a)
and (b) we can clearly see that after aligning initial
body position of experiment participants the motion
trajectories became parallel. The subplot (c) and (d)
will be discussed jointly together with results from
Table II.

Basing on results from Table II we can conclude
that median distance is a reliable indicator of motion
similarity in the term of DTW approach however it
cannot be discussed alone without knowing minimal
and maximal distances values. It is obvious that
normalized distance is always higher then minimal
but in the same time it is sufficiently smaller than
the maximal. The mean and normalized distance is
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Algorithm 2: Finds which foot is in motion.
Data: RightFoot.a, LeftFoot.a - vectors containing acceleration vectors of right and left foot.
Result: Vector lr that contains 1 where right foot is moving, -1 when left foot is moving and 0 in other

cases.
/* Perform Gaussian smoothing of foot acceleration trajectory */

1 ar ← smooth(norm(RightFoot.a));
2 al← smooth(norm(LeftFoot.a));
3 for a in 1:length(ar)-1 do
4 if ar[a] > al[a] and ar[a+ 1] > al[a+ 1] then
5 lr[a]← 1;
6 else
7 if ar[a] < al[a] and ar[a+ 1] < al[a+ 1] then
8 lr[a]← −1;

Algorithm 3: Finds two vectors sets for left and right foot.
Data: lr - output vector from Algorithm 2.
Result: Lists list.right and list.left that contains vectors of foot translations.

1 start← 0;
2 end← 0;
3 list.right← list();
4 list.left← list();
5 for a in 2:length(lr)-1 do
6 if prev 6= lr[a] then
7 if start = 0 then
8 start← a;
9 else

10 end← a− 1;
11 if prev = 1 then
12 list.right[length(list.right) + 1]← [start, end];
13 start← 0;
14 end← 0;
15 else
16 list.left[length(list.left) + 1]← [start, end];
17 start← 0;
18 end← 0;

19 prev = lr[a];
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Table 2: This table presents various DTW measurements (in centimeters) taken on DTW based paths computed
between input and reference MoCap.

min max median mean normalized
Pinian Shodan left 7.574 218.848 35.062 64.074 39.84

Pinian Shodan right 18.97 117.10 58.88 53.28 44.16
Pinian Nidan left 7.872 119.527 57.740 62.685 45.97

Pinian Nidan right 25.27 159.14 55.69 66.57 52.31
Fukyugata Ichi left 20.75 141.11 72.60 76.07 49.22

Fukyugata Ichi right 4.857 109.575 30.629 40.783 24.47
Fukyugata Ni left 25.39 86.84 73.71 65.73 45.97

Fukyugata Ni right 24.38 70.41 49.73 45.70 26.66

not much useful because of high variance in set of
calculated distances.

In ideal case when both motion paths (input and
reference) would have been partitioned in the same
number of vectors and those vectors have similar mag-
nitude and direction the warping path is a straight
line with slope coefficient equals 1; however as can
be seen our case this situation never happened. Also
there might be some differences in number of vectors
that represents the motion path. That is because our
approach is based on heuristic that only estimates real
footsteps. This event is clearly visible in analysis of
right foot motion in Piniadn shodan kata. There are
seven vectors in green path and nine vectors in blue
path. All detected vectors in blue path beside those
with indexes 4, 5 and 6 have equivalents in green
path. This situation happened because our heuristic
detected footsteps in certain direction in one recording
only. This also resulted in high maximal DTW dis-
tance of Piniadn shodan in Table 2. This event how-
ever does not affect the normalized DTW distance and
median DTW distance that is relatively low compar-
ing to other results we have obtained. In all other cases
our method worked as expected: we were able to cor-
rectly align complex motion paths that contained sev-
eral rapid rotations and not alternate leg movements,
which make this dataset very difficult to align and an-
alyze. In other cases number of vectors that represent
trajectories of input and reference data might differs
between those sets however they can be nicely aligned
with relatively low DTW median distance as can be
seen in Table 2. The differences are caused mainly by
different body proportions between recorded people
and small differences in kata execution. The temporal
factor of those recordings seems not to affect correct-
ness of solution.

5 Conclusion
The additional analysis of our method that was ini-
tially proposed in [xx] assured us that our approach
can be easily applied for aligning and comparison of
any other motion class described by two – dimen-
sional motion trajectories. It most cases it gives accu-
rate results however some inaccuracies are inevitable
especially in real, not artificially created dataset. Our
method can successfully evaluate motion paths that
were generated by people with different body propor-
tion and motion speeds. Proposed approach can be
applied for example in sport or physical therapy exer-
cises data evaluation.
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(b) Trajectories after aligning
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Figure 3: This figure presents results of evaluation of left foot in Pinian Shodan kata. Subplots (a), (b) and (c) present
trajectories of left foot of two persons (blue and green) before (a) and after (b) aligning. Motion is projected on the plane
where axis are called x and y. Y axis in all figures corresponds to Z axis of MoCap. Blue and green circles are starting and end
points of motion. Subplot (c) contains the same motion trajectories like (B), however it also introduces arrows that indicate
beginning and end positions of foot during motion. Those arrows might not be identical with real footsteps. Near each arrow
is a number that enumerates order of motions. Red dotted lines indicate DTW alignment of blue and green person. Subplot
(d) shows color-coded DTW cost matrix. Blue line is a warping path.
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Figure 4: This figure presents results of evaluation of right foot in Pinian Shodan kata. Subplots have the same role as in
Figure 3.
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Figure 5: This figure presents results of evaluation of left foot in Pinian Nidan kata. Subplots have the same role as in Figure
3.
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Figure 6: This figure presents results of evaluation of right foot in Pinian Nidan kata. Subplots have the same role as in
Figure 3.
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Figure 7: This figure presents results of evaluation of left foot in Fukyugata Ichi kata. Subplots have the same role as in
Figure 3.
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Figure 8: This figure presents results of evaluation of right foot in Fukyugata Ichi kata. Subplots have the same role as in
Figure 3.
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Figure 9: This figure presents results of evaluation of left foot in Fukyugata Ni kata. Subplots have the same role as in Figure
3.

WSEAS TRANSACTIONS on COMPUTERS Tomasz Hachaj, Marcin Piekarczyk

E-ISSN: 2224-2872 44 Volume 18, 2019



−100 −50 0 50 100

−
50

0
50

X−axis [cm]

y−
ax

is
 [c

m
]

(a) Trajectories before aligning

−50 0 50 100

−
10

0
−

50
0

50

X−axis [cm]
y−

ax
is

 [c
m

]

(b) Trajectories after aligning

−50 0 50 100

−
10

0
−

50
0

50

X−axis [cm]

y−
ax

is
 [c

m
]

1
1 21 2

2

3

3

4

4

5

5

6

6

(c) Beginning and end positions of foot during motion

1 2 3 4 5 6

1
2

3
4

5
6

Query index

R
ef

er
en

ce
 in

de
x

(d) DTW cost matrix

Figure 10: This figure presents results of evaluation of right foot in Fukyugata Ni kata. Subplots have the same role as in
Figure 3.
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